Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Investigative report on the PVC bag burst in the contamination incident at Plutonium Fuel Research Facility; Radiolysis of organic materials and raising of internal pressure

Cause Investigation Team for the PFRF Contamination Incident

JAEA-Review 2017-038, 83 Pages, 2018/03

JAEA-Review-2017-038.pdf:11.37MB

The contaminated accident occurred at Plutonium Fuel Research Facility on June, 2017. The PVC bag packaging in a fuel storage container burst when a worker opened the lid, and a part of contents (uranium and plutonium) was spattered over the room. In order to clarify the cause of the burst, the Cause Unfolding Team collected information concerning characteristics of the contents from any past records and interview. And then we observed and analyzed the contents in a glove box. We also performed experiments on radiolysis of organic materials, degradation of PVC bag by $$gamma$$ radiation, and PVC bag burst. Based on fault tree analysis, finally we concluded that the main gas generation source was alpha radiolysis of the epoxy resin mixed with the fuel powder. We hope that the calculation procedures for the gas generation and the inner pressure transition described in this report can be useful reference for the management of fuel storage in other facilities.

JAEA Reports

None

PNC TJ1533 96-004, 106 Pages, 1996/03

PNC-TJ1533-96-004.pdf:3.43MB

no abstracts in English

Oral presentation

Development of plastic enclosure tents for body contamination

Aita, Takahiro; Hirano, Hiroshi*; Kimura, Yasuhisa; Shibanuma, Tomohiro; Yoshida, Masato; Nagai, Yuya; Asakawa, Jun; Shuji, Yoshiyuki

no journal, , 

The newly developed Plastic enclosure tents have reliable airtightness and can be set up in a short time with the small number of persons. Also, in order to prevent the spread of contamination, the exhaust device secures the internal airflow line, and the radiation management device measures the concentration of radioactive materials in the air are in real time. Furthermore, by setting up a multiple of evacuation routes, the decontamination time is shortened even when there are many contaminated persons. Therefore, it is possible to quickly evacuate the contaminated person by having both radiation safety and setting up that can quickly respond to a large-scale body contamination accident.

3 (Records 1-3 displayed on this page)
  • 1